Consistency criteria for generalized Cuddeford systems
نویسندگان
چکیده
منابع مشابه
Consistency criteria for generalized Cuddeford systems
General criteria to check the positivity of the distribution function (phase–space consistency) of stellar systems of assigned density and anisotropy profile are useful starting points in Jeans– based modeling. Here we substantially extend previous results, and we present the inversion formula and the analytical necessary and sufficient conditions for phase–space consistency of the family of mu...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Extending Generalized Arc Consistency
Generalized arc consistency (GAC) is the most widely used local consistency in constraint programming. Several GAC algorithms for specific constraints, as well as generic algorithms that can be used on any constraint, have been proposed in the literature. Stronger local consistencies than GAC have also been studied but algorithms for such consistencies are generally considered too expensive. In...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملGeneralized Arc Consistency for Global Cardinality Constraint
A global cardinality constraint (gcc) is speci ed in terms of a set of variables X = fx1; :::; xpg which take their values in a subset of V = fv1; :::; vdg. It constrains the number of times a value vi 2 V is assigned to a variable in X to be in an interval [li; ci]. Cardinality constraints have proved very useful in many real-life problems, such as scheduling, timetabling, or resource allocati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2010
ISSN: 0035-8711,1365-2966
DOI: 10.1111/j.1365-2966.2009.15697.x