Conservative cut finite element methods using macroelements
نویسندگان
چکیده
We develop a conservative cut finite element method for an elliptic coupled bulk-interface problem. The is based on discontinuous Galerkin framework where stabilization added in such way that we retain conservation macroelements containing one with large intersection the domain and possibly number of elements small intersections. derive error estimates present confirming numerical results.
منابع مشابه
Locally conservative, stabilized finite element methods for variably saturated flow
Standard Galerkin finite element methods for variably saturated groundwater flow have several deficiencies. For instance, local oscillations can appear around sharp infiltration fronts without the use of mass-lumping, and velocity fields obtained from differentiation of pressure fields are discontinuous at element boundaries. Here, we consider conforming finite element discretizations based on ...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFictitious domain finite element methods using cut elements: II. A stabilized Nitsche method
We extend the classical Nitsche type weak boundary conditions to a fictitious domain setting. An additional penalty term, acting on the jumps of the gradients over element faces in the interface zone, is added to ensure that the conditioning of the matrix is independent of how the boundary cuts the mesh. Optimal a priori error estimates in the H1 and L2 norms are proved as well as an upper boun...
متن کاملMixed Finite Element Methods
A new mixed nite element method on totally distorted rectangular meshes is introduced with optimal error estimates for both pressure and velocity. This new mixed discretization ts the geometric shapes of the discontinuity of the rough coeecients and domain boundaries well. This new mixed method also enables us to derive the optimal error estimates and existence and uniqueness of Thomas's mixed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2023
ISSN: ['0045-7825', '1879-2138']
DOI: https://doi.org/10.1016/j.cma.2023.116141