Consecutive crystallographic reorientations and superplasticity in body-centered cubic niobium nanowires
نویسندگان
چکیده
منابع مشابه
Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity.
We have synthesized a new metastable metal hydride with promising hydrogen storage properties. Body centered cubic (bcc) magnesium niobium hydride (Mg(0.75)Nb(0.25))H(2) possesses 4.5 wt% hydrogen gravimetric density, with 4 wt% being reversible. Volumetric hydrogen absorption measurements yield an enthalpy of hydride formation of -53 kJ mol(-1) H(2), which indicates a significant thermodynamic...
متن کاملCryogenic nanoindentation size effect in [0 0 1]-oriented face-centered cubic and body- centered cubic single crystals
متن کامل
Body-centered-cubic Ni and its magnetic properties.
The body-centered-cubic (bcc) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bcc Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52+/-0.08 micro(B)/atom. The cubic magnetocrystalline anisotropy of bcc Ni is determined to be +4.0x10(5) ergs x cm(-3), as opposed to -5.7x...
متن کاملGrain boundary energies in body-centered cubic metals
Atomistic simulations using the embedded atom method were employed to compute the energies of 408 distinct grain boundaries in bcc Fe and Mo. This set includes grain boundaries that have tilt, twist, and mixed character and coincidence site lattices ranging from R3 to R323. The results show that grain boundary energies in Fe and Mo are influenced more by the grain boundary plane orientation tha...
متن کاملRotation-limited growth of three-dimensional body-centered-cubic crystals.
According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Advances
سال: 2018
ISSN: 2375-2548
DOI: 10.1126/sciadv.aas8850