Connectivity of soft random geometric graphs
نویسندگان
چکیده
منابع مشابه
Connectivity of Soft Random Geometric Graphs Over Annuli
Nodes are randomly distributed within an annulus (and then a shell) to form a point pattern of communication terminals which are linked stochastically according to the Rayleigh fading of radio-frequency data signals. We then present analytic formulas for the connection probability of these spatially embedded graphs, describing the connectivity behaviour as a dense-network limit is approached. T...
متن کاملConnectivity of Random High Dimensional Geometric Graphs
We consider graphs obtained by placing n points at random on a unit sphere in R, and connecting two points by an edge if they are close to each other (e.g., the angle at the origin that their corresponding unit vectors make is at most π/3). We refer to these graphs as geometric graphs. We also consider a complement family of graphs in which two points are connected by an edge if they are far aw...
متن کاملConnectivity of Random Geometric Graphs Related to Minimal Spanning Forests
The a.s. connectivity of the Euclidean minimal spanning forest MSF(X) on a homogeneous Poisson point process X ⊂ R is an open problem for dimension d > 2. We introduce a descending family of graphs (Gn)n≥2 that can be seen as approximations to the MSF in the sense that MSF(X) = ⋂∞ n=2Gn(X). For n = 2 one recovers the relative neighborhood graph or, in other words, the β-skeleton with β = 2. We ...
متن کاملPercolation, connectivity, coverage and colouring of random geometric graphs
In this review paper, we shall discuss some recent results concerning several models of random geometric graphs, including the Gilbert disc model Gr , the k-nearest neighbour model G nn k and the Voronoi model GP . Many of the results concern finite versions of these models. In passing, we shall mention some of the applications to engineering and biology.
متن کاملConnectivity Threshold of Random Geometric Graphs with Cantor Distributed Vertices
For connectivity of random geometric graphs, where there is no density for underlying distribution of the vertices, we consider n i.i.d. Cantor distributed points on [0, 1]. We show that for this random geometric graph, the connectivity threshold Rn, converges almost surely to a constant 1−2φ where 0 < φ < 1/2, which for standard Cantor distribution is 1/3. We also show that ‖Rn − (1− 2φ)‖1 ∼ 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Probability
سال: 2016
ISSN: 1050-5164
DOI: 10.1214/15-aap1110