Conformal ?-Ricci Solitons on Riemannian Submersions under Canonical Variation

نویسندگان

چکیده

This research article endeavors to discuss the attributes of Riemannian submersions under canonical variation in terms conformal ?-Ricci soliton and gradient with a potential vector field ?. Additionally, we estimate various conditions for which target manifold submersion is Killing ?(Ric)-vector field. Moreover, deduce generalized Liouville equation satisfying by last multiplier ? vertical ? show that base Riemanian an ? Einstein scalar concircular ? on manifold. Finally, illustrate example between manifolds, verify our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Projections of Laplacians under Riemannian Submersions

We give a condition on Riemannian submersions from a Riemannian manifold M to a Riemannian manifold N which will ensure that it induces a differential operator on N from the Laplace-Beltrami operator on M . Equivalently, this condition ensures that a Riemannian submersion maps Brownian motion to a diffusion. 2000 Mathematics Subject Classification. Primary 58J65, 53C21.

متن کامل

Bounded Riemannian Submersions

In this paper, we establish global metric properties of a Riemannian submersion π : Mn+k → Bn for which the fundamental tensors are bounded in norm: |A| ≤ CA, |T | ≤ CT . For example, if B is compact and simply connected, then there exists a constant C = C(B,CA, CT , k) such that for all p ∈ B, dFp ≤ C · dM , where dFp denotes the intrinsic distance function on the fiber Fp := π−1(p), and dM de...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Conformal Sigma Models with Anomalous Dimensions and Ricci Solitons

We present new non-Ricci-flat Kähler metrics with U(N) and O(N) isometries as target manifolds of conformally invariant sigma models with an anomalous dimension. They are so-called Ricci solitons, special solutions to a Ricci-flow equation. These metrics explicitly contain the anomalous dimension and reduce to Ricci-flat Kähler metrics on the canonical line bundles over certain coset spaces in ...

متن کامل

Flats in Riemannian Submersions from Lie Groups

We prove that any base space of Riemannian submersion from a compact Lie group (with bi-invariant metric) must have a basic property previously known for normal biquotients; namely, any zero-curvature plane exponentiates to a flat.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2022

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms11110594