Conformal measures and locally conformally flat metric tensors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fully Nonlinear Conformal Flow on Locally Conformally Flat Manifolds

We study a fully nonlinear flow for conformal metrics. The long-time existence and the sequential convergence of flow are established for locally conformally flat manifolds. As an application, we solve the σk-Yamabe problem for locally conformal flat manifolds when k 6= n/2.

متن کامل

Geometric Inequalities on Locally Conformally Flat Manifolds

In this paper, we are interested in certain global geometric quantities associated to the Schouten tensor and their relationship in conformal geometry. For an oriented compact Riemannian manifold (M,g) of dimension n > 2, there is a sequence of geometric functionals arising naturally in conformal geometry, which were introduced by Viaclovsky in [29] as curvature integrals of Schouten tensor. If...

متن کامل

TT - tensors and conformally flat structures on 3 - manifolds

We study transverse-tracefree (TT)-tensors on conformally flat 3-manifolds (M, g). The Cotton-York tensor linearized at g maps every symmetric tracefree tensor into one which is TT. The question as to whether this is the general solution to the TT-condition is viewed as a cohomological problem within an elliptic complex first found by Gasqui and Goldschmidt and reviewed in the present paper. Th...

متن کامل

Locally conformal flat Riemannian manifolds with constant principal Ricci curvatures and locally conformal flat C-spaces

It is proved that every locally conformal flat Riemannian manifold all of whose Jacobi operators have constant eigenvalues along every geodesic is with constant principal Ricci curvatures. A local classification (up to an isometry) of locally conformal flat Riemannian manifold with constant Ricci eigenvalues is given in dimensions 4, 5, 6, 7 and 8. It is shown that any n-dimensional (4 ≤ n ≤ 8)...

متن کامل

Compactness for Conformal Metrics with Constant Q Curvature on Locally Conformally Flat Manifolds

In this note we study the conformal metrics of constant Q curvature on closed locally conformally flat manifolds. We prove that for a closed locally conformally flat manifold of dimension n ≥ 5 and with Poincarë exponent less than n−4 2 , the set of conformal metrics of positive constant Q and positive scalar curvature is compact in the C∞ topology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica

سال: 2016

ISSN: 1239-629X,1798-2383

DOI: 10.5186/aasfm.2016.4109