Cones in Complex Affine Space are Topologically Singular

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group actions on affine cones

We address the following question: Determine the affine cones over smooth projective varieties which admit an action of a connected algebraic group different from the standard C∗-action by scalar matrices and its inverse action. We show in particular that the affine cones over anticanonically embedded smooth del Pezzo surfaces of degree ≥ 4 possess such an action. A question in [FZ1] whether th...

متن کامل

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

Full Affine Wavelets Are Scale-Space with a Twist

Iterated nonlocal means for texture restoration p. 13 The jet metric p. 25 Scale selection for compact scale-space representation of vector-valued images p. 32 An high order finite co-volume scheme for denoising using radial basis functions p. 43 Linear image reconstruction by Sobolev norms on the bounded domain p. 55 A nonconvex model to remove multiplicative noise p. 68 Best basis compressed ...

متن کامل

Non - singular affine surfaces with self - maps

We classify surjective self-maps (of degree at least two) of affine surfaces according to the log Kodaira dimension. In this paper we are interested in the following question. Question. Classify all smooth affine surfaces X/C which admit a proper morphism f : X → X with degree f > 1. In [5] and [18], a classification of smooth projective surfaces with a self-map of degree > 1 has been given. Th...

متن کامل

Singular Trajectories of Control-Affine Systems

When applying methods of optimal control to motion planning or stabilization problems, some theoretical or numerical difficulties may arise, due to the presence of specific trajectories, namely, singular minimizing trajectories of the underlying optimal control problem. In this article, we provide characterizations for singular trajectories of control-affine systems. We prove that, under generi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1967

ISSN: 0002-9939

DOI: 10.2307/2035251