منابع مشابه
Centrifugal Instability over a Rotating Cone
In this study, we provide a mathematical description of the onset of counter-rotating circular vortices observed for a family of slender rotating cones (of half-angles 15◦, 30◦ and 45◦) in quiescent fluid. In particular, we apply appropriate scalings and apply a change of coordinates, accounting for the effects of streamline curvature. A combined large Reynolds number and large vortex wavenumbe...
متن کاملBarotropic elliptical dipoles in a rotating fluid
Barotropic f -plane dipolar vortices were generated in a rotating fluid and a comparison was made with the so-called supersmooth f -plane solution which—in contrast to the classical Lamb–Chaplygin solution—is marked by an elliptical separatrix and a doubly continuously differentiable vorticity field. Dyevisualization and high-resolution particle-tracking techniques revealed that the observed di...
متن کاملThermal Convection of Rotating Micropolar Fluid in Hydromagnetics Saturating A Porous Medium
This paper deals with the theoretical investigation of the thermal instability of a thin layer of electrically conducting micropolar rotating fluid, heated from below in the presence of uniform vertical magnetic field in porous medium. A dispersion relation is obtained for a flat fluid layer, contained between two free boundaries using a linear stability analysis theory, and normal mode analysi...
متن کاملMach cone in a shallow granular fluid.
We study the V -shaped wake (Mach cone) formed by a cylindrical rod moving through a thin, vertically vibrated granular layer. The wake, analogous to a shock (hydraulic jump) in shallow water, appears for rod velocities vR greater than a critical velocity c . We measure the half angle theta; of the wake as a function of vR and layer depth h . The angle satisfies the Mach relation, sin theta=c/v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Natural Science
سال: 2020
ISSN: 2150-4091,2150-4105
DOI: 10.4236/ns.2020.121001