Cone-fields without constant orbit core dimension
نویسندگان
چکیده
منابع مشابه
Isotropic Constant Dimension Subspace Codes
In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...
متن کاملOrbit Closures in the Enhanced Nilpotent Cone
We study the orbits of G = GL(V ) in the enhanced nilpotent cone V ×N , where N is the variety of nilpotent endomorphisms of V . These orbits are parametrized by bipartitions of n = dimV , and we prove that the closure ordering corresponds to a natural partial order on bipartitions. Moreover, we prove that the local intersection cohomology of the orbit closures is given by certain bipartition a...
متن کاملDimension of the orbit of marked subspaces
Given a nilpotent endomorphism, we consider the manifold of invariant subspaces having a fixed Segre characteristic. In [Linear Algebra Appl., 332–334 (2001) 569], the implicit form of a miniversal deformation of an invariant subspace with respect to the usual equivalence relation between subspaces is obtained. Here we obtain the explicit form of this deformation when the invariant subspace is ...
متن کاملDimension of a minimal nilpotent orbit
We show that the dimension of the minimal nilpotent coadjoint orbit for a complex simple Lie algebra is equal to twice the dual Coxeter number minus two. Let g be a finite dimensional complex simple Lie algebra. We fix a Cartan subalgebra h, a root system ∆ ⊂ h and a set of positive roots ∆+ ⊂ ∆. Let ρ be half the sum of all positive roots. Denote by θ the highest root and normalize the Killing...
متن کاملAlgebraic Dimension over Frobenius Fields
We prove that each perfect Frobenius field is algebraically bounded and hence has a dimension function in the sense of v.d. Dries on the collection of all definable sets. Given a definable set S over Q (resp. Fp) we can effectively determine for each k ∈ {−∞, 0, 1, . . .} whether there exists a perfect Frobenius fieldM of characteristic 0 (resp., of characteristic p) such that the dimension of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2012
ISSN: 1078-0947
DOI: 10.3934/dcds.2012.32.3651