Condition Number and Clustering-Based Efficiency Improvement of Reduced-Order Solvers for Contact Problems Using Lagrange Multipliers
نویسندگان
چکیده
This paper focuses on reduced-order modeling for contact mechanics problems treated by Lagrange multipliers. The high nonlinearity of the dual solutions lead to poor classical data compression. A hyper-reduction approach based a reduced integration domain (RID) is considered. basis restriction RID full-order basis, which ensures hyper-reduced model respect non-linearity constraints. However, verification solvability condition, associated with well-posedness solution, may induce an extension primal without guaranteeing accurate forces. We highlight strong link between condition number projected rigidity matrix and precision solutions. Two efficient strategies enrichment POD are then introduced. large parametric variation zone, reachable remain limited. clustering strategy space proposed in order deal piece-wise low-rank approximations. On each cluster, local built thanks strategies. overall solution deeply improved while preserving interesting compression both bases.
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولLagrange Multipliers for Higher Order Elliptic Operators
In this paper, the Babuška’s theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions. Mathematics Subject Classification. 41A10, 41A17, 65N15, 65N30. Received: April 5, 2004.
متن کاملA priori error for unilateral contact problems with Lagrange multipliers and IsoGeometric Analyis
In this paper, we consider unilateral contact problem without friction between a rigid body and deformable one in the framework of isogeometric analysis. We present the theoretical analysis of the mixed problem using an active-set strategy and for a primal space of NURBS of degree p and p − 2 for a dual space of B-Spline. A inf − sup stability is proved to ensure a good property of the method. ...
متن کاملEfficient Preconditioners Based on Fictitious Domains for Elliptic Fe{problems with Lagrange Multipliers Eecient Preconditioners Based on Ctitious Domains for Elliptic Fe{problems with Lagrange Multipliers
The macro{hybrid formulation based on domain decomposition is considered for elliptic boundary value problems with both symmetric positive deenite and indeenite operators. The problem is discretized by the mortar element method, which leads to a large{scale sparse linear system with a saddle{ point matrix. In the case of symmetric and positive deenite operators, a block diagonal preconditioner ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10091495