Computing the Real Zeros of Hypergeometric Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical algorithms for the real zeros of hypergeometric functions

Algorithms for the computation of the real zeros of hypergeometric functions which are solutions of second order ODEs are described. The algorithms are based on global fixed point iterations which apply to families of functions satisfying first order linear difference differential equations with continuous coefficients. In order to compute the zeros of arbitrary solutions of the hypergeometric ...

متن کامل

Real zeros of 2F1 hypergeometric polynomials

We use a method based on the division algorithm to determine all the values of the real parameters b and c for which the hypergeometric polynomials 2F1(−n, b; c; z) have n real, simple zeros. Furthermore, we use the quasi-orthogonality of Jacobi polynomials to determine the intervals on the real line where the zeros are located.

متن کامل

Computing hypergeometric functions rigorously

We present an efficient implementation of hypergeometric functions in arbitraryprecision interval arithmetic. The functions 0F1, 1F1, 2F1 and 2F0 (or the Kummer U -function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, ...

متن کامل

Real zeros of quadratic Dirichlet L - functions

A small part of the Generalized Riemann Hypothesis asserts that L-functions do not have zeros on the line segment ( 2 , 1]. The question of vanishing at s = 2 often has deep arithmetical significance, and has been investigated extensively. A persuasive view is that L-functions vanish at 2 either for trivial reasons (the sign of the functional equation being negative), or for deep arithmetical r...

متن کامل

Non-real Zeros of Derivatives of Real Meromorphic Functions

The main result of the paper determines all real meromorphic functions f of finite order in the plane such that f ′ has finitely many zeros while f and f(k), for some k ≥ 2, have finitely many non-real zeros. MSC 2000: 30D20, 30D35.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algorithms

سال: 2004

ISSN: 1017-1398

DOI: 10.1023/b:numa.0000033128.64649.7a