Computing the exponential of an intensity matrix
نویسندگان
چکیده
منابع مشابه
Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators
A new algorithm is developed for computing etAB, where A is an n× n matrix and B is n×n0 with n0 ≪ n. The algorithm works for any A, its computational cost is dominated by the formation of products of A with n× n0 matrices, and the only input parameter is a backward error tolerance. The algorithm can return a single matrix etAB or a sequence etkAB on an equally spaced grid of points tk. It uses...
متن کاملMatrix Padé-Type Method for Computing the Matrix Exponential
Matrix Padé approximation is a widely used method for computing matrix functions. In this paper, we apply matrix Padé-type approximation instead of typical Padé approximation to computing the matrix exponential. In our approach the scaling and squaring method is also used to make the approximant more accurate. We present two algorithms for computing A e and for computing At e with many 0 t re...
متن کاملThe Matrix Unwinding Function, with an Application to Computing the Matrix Exponential
A new matrix function corresponding to the scalar unwinding number of Corless, Hare, and Jeffrey is introduced. This matrix unwinding function, U , is shown to be a valuable tool for deriving identities involving the matrix logarithm and fractional matrix powers, revealing, for example, the precise relation between logAα and α logA. The unwinding function is also shown to be closely connected w...
متن کاملComputing a Matrix Function for Exponential Integrators
An efficient numerical method is developed for evaluating φ(A), where A is a symmetric matrix and φ is the function defined by φ(x) = (ex − 1)/x = 1+ x/2 + x2/6+ .... This matrix function is useful in the so-called exponential integrators for differential equations. In particular, it is related to the exact solution of the ODE system dy/dt = Ay + b, where A and b are t-independent. Our method a...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1993
ISSN: 0377-0427
DOI: 10.1016/0377-0427(93)90036-b