Computing sparse approximations deterministically

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse spectral approximations for computing polynomial functionals

We give a new fast method for evaluating sprectral approximations of nonlinear polynomial functionals. We prove that the new algorithm is convergent if the functions considered are smooth enough, under a general assumption on the spectral eigenfunctions that turns out to be satisfied in many cases, including the Fourier and Hermite basis. MSC numbers: 65D15, 65M70, 33C45.

متن کامل

Deterministically Factoring Sparse Polynomials into Multilinear Factors

We present the first efficient deterministic algorithm for factoring sparse polynomials that split into multilinear factors. Our result makes partial progress towards the resolution of the classical question posed by von zur Gathen and Kaltofen in [GK85] to devise an efficient deterministic algorithm for factoring (general) sparse polynomials. We achieve our goal by introducing essential factor...

متن کامل

Computing sparse Hessian and Jacobian approximations with optimal hereditary properties

In nonlinear optimization it is often important to estimate large sparse Hessian or Jacobian matrices, to be used for example in a trust region method. We propose an algorithm for computing a matrix B with a given sparsity pattern from a bundle of the m most recent diierence vectors = h k?m+1 : : : k i ; ? = h k?m+1 : : : k i ; where B should approximately map into ?. In this paper B is chosen ...

متن کامل

Deterministically Computing Reduction Numbers of Polynomial Ideals

We present two approaches to compute the (absolute) reduction number of a polynomial ideal. The first one puts the ideal into a position such that the reduction number of its leading ideal can be easily read off the minimal generators and then uses linear algebra to determine the reduction number of the ideal itself. The second method computes via a Gröbner system not only the absolute reductio...

متن کامل

Deterministically testing sparse polynomial identities of unbounded degree

We present two deterministic algorithms for the arithmetic circuit identity testing problem. The running time of our algorithms is polynomially bounded in s and m, where s is the size of the circuit and m is an upper bound on the number monomials with non-zero coefficients in its standard representation. The running time of our algorithms also has a logarithmic dependence on the degree of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1996

ISSN: 0024-3795

DOI: 10.1016/0024-3795(94)00175-8