Computing Lyapunov functions for strongly asymptotically stable differential inclusions
نویسندگان
چکیده
منابع مشابه
Computing Lyapunov functions for strongly asymptotically stable differential inclusions
We present a numerical algorithm for computing Lyapunov functions for a class of strongly asymptotically stable nonlinear differential inclusions which includes switched systems and systems with uncertain parameters. The method relies on techniques from nonsmooth analysis and linear programming and leads to a piecewise affine Lyapunov function. We provide a thorough analysis of the method and p...
متن کاملAsymptotically linear solutions of differential equations via Lyapunov functions
We discuss the existence of solutions with oblique asymptotes to a class of second order nonlinear ordinary differential equations by means of Lyapunov functions. The approach is new in this field and allows for simpler proofs of general results regarding Emden-Fowler like equations.
متن کاملSet-valued Lyapunov functions for difference inclusions
The paper relates set-valued Lyapunov functions to pointwise asymptotic stability in systems described by a difference inclusion. Pointwise asymptotic stability of a set is a property which requires that each point of the set be Lyapunov stable and that every solution to the inclusion, from a neighborhood of the set, be convergent and have the limit in the set. Weak set-valued Lyapunov function...
متن کاملFurther Results on Lyapunov Functions and Domains of Attraction for Perturbed Asymptotically Stable Systems
We present new theorems characterizing robust Lyapunov functions and infinite horizon value functions in optimal control as unique viscosity solutions of partial differential equations. We use these results to further extend Zubov’s method for representing domains of attraction in terms of partial differential equation solutions.
متن کاملLyapunov Functions for Differential Inclusions and Applications in Physics, Biology, and Climatology
We investigate additional regularity properties of all globally definedweak solutions, their global and trajectory attractors for classes of semi-linear parabolic differential inclusions with initial data from the natural phase space. The main contributions in this note are: (i) sufficient conditions for the existence of a Lyapunov function for a class of parabolic feedback control problems; (i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2010
ISSN: 1474-6670
DOI: 10.3182/20100901-3-it-2016.00132