Computing Isotypic Projections with the Lanczos Iteration
نویسندگان
چکیده
منابع مشابه
Computing Isotypic Projections with the Lanczos Iteration
When the isotypic subspaces of a representation are viewed as the eigenspaces of a symmetric linear transformation, isotypic projections may be achieved as eigenspace projections and computed using the Lanczos iteration. In this paper, we show how this approach gives rise to an efficient isotypic projection method for permutation representations of distance transitive graphs and the symmetric g...
متن کاملComputing charge densities with partially reorthogonalized Lanczos
This paper considers the problem of computing charge densities in a density functional theory (DFT) framework. In contrast to traditional, diagonalization-based, methods, we utilize a technique which exploits a Lanczos basis, without explicit reference to individual eigenvectors. The key ingredient of this new approach is a partial reorthogonalization strategy whose goal is to ensure a good lev...
متن کاملFast Spectral Learning using Lanczos Eigenspace Projections
The core computational step in spectral learning – finding the projection of a function onto the eigenspace of a symmetric operator, such as a graph Laplacian – generally incurs a cubic computational complexity O(N). This paper describes the use of Lanczos eigenspace projections for accelerating spectral projections, which reduces the complexity to O(nTop + nN) operations, where n is the number...
متن کاملComputing Projections with Lsqr*
LSQR uses the Golub-Kahan bidiagonalization process to solve sparse least-squares problems with and without regularization. In some cases, projections of the right-hand side vector are required, rather than the least-squares solution itself. We show that projections may be obtained from the bidiagonalization as linear combinations of (theoretically) orthogonal vectors. Even the least-squares so...
متن کاملAn Eigenspace Approach to Decomposing Representations of Finite Groups
The first half of this thesis develops an eigenspace approach to computing the basisindependent isotypic decomposition of a vector in a representation of a finite group. The approach takes advantage of well-chosen diagonalizable linear transformations to compute isotypic projections through a series of eigenspace projections, and at its heart is an efficient eigenspace projection method built a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2003
ISSN: 0895-4798,1095-7162
DOI: 10.1137/s0895479801399778