Computing Isotypic Projections with the Lanczos Iteration

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Isotypic Projections with the Lanczos Iteration

When the isotypic subspaces of a representation are viewed as the eigenspaces of a symmetric linear transformation, isotypic projections may be achieved as eigenspace projections and computed using the Lanczos iteration. In this paper, we show how this approach gives rise to an efficient isotypic projection method for permutation representations of distance transitive graphs and the symmetric g...

متن کامل

Computing charge densities with partially reorthogonalized Lanczos

This paper considers the problem of computing charge densities in a density functional theory (DFT) framework. In contrast to traditional, diagonalization-based, methods, we utilize a technique which exploits a Lanczos basis, without explicit reference to individual eigenvectors. The key ingredient of this new approach is a partial reorthogonalization strategy whose goal is to ensure a good lev...

متن کامل

Fast Spectral Learning using Lanczos Eigenspace Projections

The core computational step in spectral learning – finding the projection of a function onto the eigenspace of a symmetric operator, such as a graph Laplacian – generally incurs a cubic computational complexity O(N). This paper describes the use of Lanczos eigenspace projections for accelerating spectral projections, which reduces the complexity to O(nTop + nN) operations, where n is the number...

متن کامل

Computing Projections with Lsqr*

LSQR uses the Golub-Kahan bidiagonalization process to solve sparse least-squares problems with and without regularization. In some cases, projections of the right-hand side vector are required, rather than the least-squares solution itself. We show that projections may be obtained from the bidiagonalization as linear combinations of (theoretically) orthogonal vectors. Even the least-squares so...

متن کامل

An Eigenspace Approach to Decomposing Representations of Finite Groups

The first half of this thesis develops an eigenspace approach to computing the basisindependent isotypic decomposition of a vector in a representation of a finite group. The approach takes advantage of well-chosen diagonalizable linear transformations to compute isotypic projections through a series of eigenspace projections, and at its heart is an efficient eigenspace projection method built a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2003

ISSN: 0895-4798,1095-7162

DOI: 10.1137/s0895479801399778