Computational Studies of Marine Toxins Targeting Ion Channels
نویسندگان
چکیده
منابع مشابه
Computational Studies of Marine Toxins Targeting Ion Channels
Toxins from marine animals offer novel drug leads for treatment of diseases involving ion channels. Computational methods could be very helpful in this endeavour in several ways, e.g., (i) constructing accurate models of the channel-toxin complexes using docking and molecular dynamics (MD) simulations; (ii) determining the binding free energies of toxins from umbrella sampling MD simulations; (...
متن کاملMarine Toxins Targeting Ion Channels
This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC super...
متن کاملFrom Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules
Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to d...
متن کاملComputational Studies of Venom Peptides Targeting Potassium Channels
Small peptides isolated from the venom of animals are potential scaffolds for ion channel drug discovery. This review article mainly focuses on the computational studies that have advanced our understanding of how various toxins interfere with the function of K⁺ channels. We introduce the computational tools available for the study of toxin-channel interactions. We then discuss how these comput...
متن کاملShellfish Toxins Targeting Voltage-Gated Sodium Channels
Voltage-gated sodium channels (VGSCs) play a central role in the generation and propagation of action potentials in excitable neurons and other cells and are targeted by commonly used local anesthetics, antiarrhythmics, and anticonvulsants. They are also common targets of neurotoxins including shellfish toxins. Shellfish toxins are a variety of toxic secondary metabolites produced by prokaryoti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Marine Drugs
سال: 2013
ISSN: 1660-3397
DOI: 10.3390/md11030848