Computational design of ligand-binding membrane receptors with high selectivity
نویسندگان
چکیده
منابع مشابه
Computational design of ligand binding membrane receptors with high selectivity
Accurate modeling and design of protein-ligand interactions have broad applications in cell biology, synthetic biology and drug discovery but remain challenging without experimental protein structures. Here we developed an integrated protein-homology-modeling, ligand-docking protein-design approach that reconstructs protein-ligand binding sites from homolog protein structures in the presence of...
متن کاملComputational approaches to model ligand selectivity in drug design.
To be effective, a designed drug must discriminate successfully the macromolecular target from alternative structures present in the organism. The last few years have witnessed the emergence of different computational tools aimed to the understanding and modeling of this process at molecular level. Although still rudimentary, these methods are shaping a coherent approach to help in the design o...
متن کاملRole of fluctuations in ligand binding cooperativity of membrane receptors.
Signal transduction upon binding of a ligand to a membrane protein can occur not only via allosteric conformational changes but also through fluctuations. We report a numerical study on the influence of conformational fluctuations on the cooperativity of a binding reaction in a simple model of an integral membrane receptor consisting of transmembrane helices. We find that small fluctuations lat...
متن کاملComputational design of ligand binding is not a solved problem.
Computational design has been very successful in recent years: multiple novel ligand binding proteins as well as enzymes have been reported. We wanted to know in molecular detail how precise the predictions of the interactions of protein and ligands are. Therefore, we performed a structural analysis of a number of published receptors designed onto the periplasmic binding protein scaffold that w...
متن کاملStructural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors.
The peroxisome proliferator-activated receptors (PPARs) are transcriptional regulators of glucose, lipid, and cholesterol metabolism. We report the x-ray crystal structure of the ligand binding domain of PPAR alpha (NR1C1) as a complex with the agonist ligand GW409544 and a coactivator motif from the steroid receptor coactivator 1. Through comparison of the crystal structures of the ligand bind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Chemical Biology
سال: 2017
ISSN: 1552-4450,1552-4469
DOI: 10.1038/nchembio.2371