Computation of Newton sum rules for associated and co-recursive classical orthogonal polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Co-recursive Orthogonal Polynomials

is equivalent to (1.1) with 6„ = 0 (w^2) and Pi(0)p^0. The condition b„ = 0 (w^2) suggests the symmetric case, (i.e.,P„( — x) = ( —l)"P„(x)) but this is denied by the condition Pi(0) ^0. (In fact, (1.2) shows that Pn( — r)^0 whenever Pn(r)=0.) It then seems natural to ask what relations exist between a set of polynomials satisfying (1.2) and the corresponding symmetric polynomials which would b...

متن کامل

Q-Hermite Polynomials and Classical Orthogonal Polynomials

We use generating functions to express orthogonality relations in the form of q-beta integrals. The integrand of such a q-beta integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegő and leads naturally to the Al-Salam-Chihara p...

متن کامل

Classical Photoabsorption Sum Rules

We u s e a q u a n tum loop expansion to derive sum rule constraints on polarized photoabsorption cross sections in the Standard Model, generalizing earlier results obtained by Altarelli, Cabibbo, and Maiani. We s h o w that the logarithmic integral of the spin-dependent photoabsorption cross section R 1 th dd Born () v anishes for any 2 ! 2 process a! bc in the classical, tree-graph approximat...

متن کامل

Orthogonal polynomials: applications and computation

We give examples of problem areas in interpolation, approximation, and quadrature, that call for orthogonal polynomials not of the classical kind. We then discuss numerical methods of computing the respective Gauss-type quadrature rules and orthogonal polynomials. The basic task is to compute the coefficients in the three-term recurrence relation for the orthogonal polynomials. This can be done...

متن کامل

Sum Rules and the Szegő Condition for Orthogonal Polynomials on the Real Line

We study the Case sum rules, especially C0, for general Jacobi matrices. We establish situations where the sum rule is valid. Applications include an extension of Shohat’s theorem to cases with an infinite point spectrum and a proof that if lim n(an− 1) = α and lim nbn = β exist and 2α < |β|, then the Szegő condition fails.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2001

ISSN: 0377-0427

DOI: 10.1016/s0377-0427(00)00671-3