Compound Growth due to Reactive Diffusion between Solid-Ni and Liquid-Zn
نویسندگان
چکیده
منابع مشابه
The Enthalpies of Mixing of Liquid Ni-Sn-Zn Alloys
The partial and integral enthalpies of mixing of liquid ternary Ni-Sn-Zn alloys were determined. The system was investigated along two sections xNi/xSn ≈ 1:9, xNi/xSn ≈ 1:6 at 1073 K and along two sections xSn/xZn ≈ 9:1, xSn/xZn ≈ 4:1 at 873 K. The integral enthalpy of mixing at each temperature is described using the Redlich-Kister-Muggianu model for substitutional ternary solutions. In additi...
متن کاملElectroplating and characterization of Zn–Ni, Zn–Co and Zn–Ni–Co alloys
a r t i c l e i n f o Zn–Ni, Zn–Co and Zn–Ni–Co coatings were electrodeposited on mild steel from an acidic chloride bath containing p-aminobenzenesulphonic acid (SA) and gelatin. These additives changed the phase content in the coatings, most likely as a result of their adsorption at the surface of the cathode. The effect of gelatin was more pronounced than that of SA. The Faradaic efficiency ...
متن کاملSolution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملSimulating Caustics due to Liquid-Solid Interface Menisci
A solid partially immersed in a liquid creates a local deformation of the liquid surface at their interface. This deformation, called a meniscus, exhibits high curvature, and as such, produces very intriguing caustic patterns. However, this natural phenomena has been neglected in almost all previous liquid simulation techniques. We propose a complete solution to model and render meniscal illumi...
متن کاملSupersonic air flow due to solid-liquid impact.
A solid object impacting on liquid creates a liquid jet due to the collapse of the impact cavity. Using visualization experiments with smoke particles and multiscale simulations, we show that in addition, a high-speed air jet is pushed out of the cavity. Despite an impact velocity of only 1 m/s, this air jet attains supersonic speeds already when the cavity is slightly larger than 1 mm in diame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATERIALS TRANSACTIONS
سال: 2018
ISSN: 1345-9678,1347-5320
DOI: 10.2320/matertrans.m2018199