Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Simulated Likelihood Estimation of Random Effects Dynamic Probit Models with Autocorrelated Errors

This paper investigates the use of Maximum Simulated Likelihood estimation for random effects dynamic probit models with autocorrelated errors. It presents a new Stata command, redpace, for this estimator and illustrates its usage. The paper also compares the use of pseudo-random numbers and Halton sequences of quasi-random numbers for the MSL estimation of these models.

متن کامل

Estimation of spatial autoregressive panel data models with fixed effects

This paper establishes asymptotic properties of quasi-maximum likelihood estimators for SAR panel data models with fixed effects and SAR disturbances. A direct approach is to estimate all the parameters including the fixed effects. Because of the incidental parameter problem, some parameter estimatorsmay be inconsistent or their distributions are not properly centered. We propose an alternative...

متن کامل

Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...

متن کامل

Dynamic Panel Probit with Flexible Correlated Effects

In this paper, we analyze a dynamic panel probit model with two flexible latent effects: first, unobserved individual heterogeneity that is allowed to vary in the population according to an assumption-free nonparametric distribution, and second, with a latent serially correlated common error component. In doing so, we extend the approach developed in Albert and Chib (1993), Albert and Chib (199...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2019

ISSN: 1556-5068

DOI: 10.2139/ssrn.3381994