Componentwise linear ideals and Golod rings.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lefschetz Property for Componentwise Linear Ideals and Gotzmann Ideals

For standard graded Artinian K-algebras defined by componentwise linear ideals and Gotzmann ideals, we give conditions for the weak Lefschetz property in terms of numerical invariants of the defining ideals.

متن کامل

Some Families of Componentwise Linear Monomial Ideals

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Let J = {j1, . . . , jt} be a subset of {1, . . . , n}, and let mJ ⊂ R denote the ideal (xj1 , . . . , xjt). Given subsets J1, . . . , Js of {1, . . . , n} and positive integers a1, . . . , as, we study ideals of the form I = m1 J1 ∩ · · · ∩ m as Js . These ideals arise naturally, for example, in the study of fat points, tetrahedral...

متن کامل

Componentwise Linear Ideals with Minimal or Maximal Betti Numbers

We characterize componentwise linear monomial ideals with minimal Taylor resolution and consider the lower bound for the Betti numbers of componentwise linear ideals. INTRODUCTION Let S = K[x1, . . . ,xn] denote the polynomial ring in n variables over a field K with each degxi = 1. Let I be a monomial ideal of S and G(I) = {u1, . . . ,us} its unique minimal system of monomial generators. The Ta...

متن کامل

VAGUE RINGS AND VAGUE IDEALS

In this paper, various elementary properties of vague rings are obtained. Furthermore, the concepts of vague subring, vague ideal, vague prime ideal and vague maximal ideal are introduced, and the validity of some relevant classical results in these settings are investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 1999

ISSN: 0026-2285

DOI: 10.1307/mmj/1030132406