Componentwise Condition Numbers of Random Sparse Matrices
نویسندگان
چکیده
منابع مشابه
Condition Numbers of Gaussian Random Matrices
Abstract. Let Gm×n be an m × n real random matrix whose elements are independent and identically distributed standard normal random variables, and let κ2(Gm×n) be the 2-norm condition number of Gm×n. We prove that, for any m ≥ 2, n ≥ 2, and x ≥ |n − m| + 1, κ2(Gm×n) satisfies 1 √ 2π (c/x)|n−m|+1 < P ( κ2(Gm×n) n/(|n−m|+1) > x) < 1 √ 2π (C/x)|n−m|+1, where 0.245 ≤ c ≤ 2.000 and 5.013 ≤ C ≤ 6.414...
متن کاملCondition Numbers of Random Triangular Matrices
Let L n be a lower triangular matrix of dimension n each of whose nonzero entries is an independent N(0; 1) variable, i.e., a random normal variable of mean 0 and variance 1. It is shown that n , the 2-norm condition number of L n , satisses n p n ! 2 almost surely as n ! 1. This exponential growth of n with n is in striking contrast to the linear growth of the condition numbers of random dense...
متن کاملCondition Numbers of Matrices
denote its Euclidean operator norm (often called the 2-norm). If is nonsingular, then its condition number () is defined by () = kk°°−1°° = 1() () where 1 ≥ 1 ≥ ≥ ≥ 0 are the singular values of . The s constitute lengths of the semi-axes of the hyperellipsoid = { : kk = 1} in -dimensional space; thus measures elongation of at its extreme [1]. The role that ...
متن کاملEigenvalues and Condition Numbers of Complex Random Matrices
In this paper, the distributions of the largest and smallest eigenvalues of complex Wishart matrices and the condition number of complex Gaussian random matrices are derived. These distributions are represented by complex hypergeometric functions of matrix arguments, which can be expressed in terms of complex zonal polynomials. Several results are derived on complex hypergeometric functions and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2009
ISSN: 0895-4798,1095-7162
DOI: 10.1137/080729463