Complexity of integer quasiconvex polynomial optimization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of integer quasiconvex polynomial optimization

We study a particular case of integer polynomial optimization: Minimize a polynomial F̂ on the set of integer points described by an inequality system F1 ≤ 0, . . . , Fs ≤ 0, where F̂ , F1, . . . , Fs are quasiconvex polynomials in n variables with integer coefficients. We design an algorithm solving this problem that belongs to the time-complexity class O(s) · lO(1) · dO(n) · 2O(n 3), where d ≥ ...

متن کامل

A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity 2O(nlogn)

We study the integer minimization of a quasiconvex polynomial with quasiconvex polynomial constraints. We propose a new algorithm that is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). This improvement is achieved by applying a new modern Lenstra-type algorithm, finding optimal ellipsoid roundings, and considering sparse encodings of polynomials. For th...

متن کامل

Integer Polynomial Optimization in Fixed Dimension

We classify, according to their computational complexity, integer optimization problems whose constraints and objective functions are polynomials with integer coefficients and the number of variables is fixed. For the optimization of an integer polynomial over the lattice points of a convex polytope, we show an algorithm to compute lower and upper bounds for the optimal value. For polynomials t...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

Explicitly quasiconvex optimization problems

We present some properties of explicitly quasiconvex functions, which play an important role in both multicriteria and scalar optimization. Some of these results were recently obtained together with Ovidiu Bagdasar during a research visit at the University of Derby (UK), within the project

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 2005

ISSN: 0885-064X

DOI: 10.1016/j.jco.2005.04.004