Complex-Valued Neural Networks Training: A Particle Swarm Optimization Strategy
نویسندگان
چکیده
منابع مشابه
Complex-Valued Neural Networks Training: A Particle Swarm Optimization Strategy
QSAR (Quantitative Structure-Activity Relationship) modelling is one of the well developed areas in drug development through computational chemistry. This kind of relationship between molecular structure and change in biological activity is center of focus for QSAR modelling. Machine learning algorithms are important tools for QSAR analysis, as a result, they are integrated into the drug produc...
متن کاملTraining Neural Networks Using Multiobjective Particle Swarm Optimization
This paper suggests an approach to neural network training through the simultaneous optimization of architectures and weights with a Particle Swarm Optimization (PSO)-based multiobjective algorithm. Most evolutionary computation-based training methods formulate the problem in a single objective manner by taking a weighted sum of the objectives from which a single neural network model is generat...
متن کاملDiscrete Multi-Valued Particle Swarm Optimization
We present a new optimization technique based on the Particle Swarm Optimization algorithm to be used for solving problems with unordered discrete-valued solution elements. The algorithm achieves comparable performance to both the previous modification of PSO for binary optimization and to genetic algorithms on a standard set of benchmark problems. Performance is maintained on these problems re...
متن کاملOPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملTraining Artificial Neural Network using Particle Swarm Optimization Algorithm
In this paper, the adaptation of network weights using Particle Swarm Optimization (PSO) was proposed as a mechanism to improve the performance of Artificial Neural Network (ANN) in classification of IRIS dataset. Classification is a machine learning technique used to predict group membership for data instances. To simplify the problem of classification neural networks are being introduced. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2016
ISSN: 2156-5570,2158-107X
DOI: 10.14569/ijacsa.2016.070185