Complex Outliers of Hermitian Random Matrices
نویسندگان
چکیده
منابع مشابه
Almost-Hermitian Random Matrices: Eigenvalue Density in the Complex Plane
We consider an ensemble of large non-Hermitian random matrices of the form Ĥ + iÂs, where Ĥ and Âs are Hermitian statistically independent random N × N matrices. We demonstrate the existence of a new nontrivial regime of weak non-Hermiticity characterized by the condition that the average of NTrÂs is of the same order as that of TrĤ 2 when N → ∞. We find explicitly the density of complex eigenv...
متن کاملPseudo-Hermitian ensemble of random Gaussian matrices.
It is shown how pseudo-Hermiticity, a necessary condition satisfied by operators of PT symmetric systems can be introduced in the three Gaussian classes of random matrix theory. The model describes transitions from real eigenvalues to a situation in which, apart from a residual number, the eigenvalues are complex conjugate.
متن کاملProducts of independent non-Hermitian random matrices
We consider the product of a finite number of non-Hermitian random matrices with i.i.d. centered entries of growing size. We assume that the entries have a finite moment of order bigger than two. We show that the empirical spectral distribution of the properly normalized product converges, almost surely, to a non-random, rotationally invariant distribution with compact support in the complex pl...
متن کاملWigner surmise for Hermitian and non-Hermitian chiral random matrices.
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...
متن کاملA Classification Ofnon-hermitian Random Matrices
We present a classification of non-hermitian random matrices based on implementing commuting discrete symmetries. It contains 43 classes. This generalizes the classification of hermitian random matrices due to Altland-Zirnbauer and it also extends the Ginibre ensembles of nonhermitian matrices [1]. Random matrix theory originates from the work of Wigner and Dyson on random hamiltonians [2]. Sin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical Probability
سال: 2016
ISSN: 0894-9840,1572-9230
DOI: 10.1007/s10959-016-0686-4