Complex linear groups of degree at most v − 3
نویسندگان
چکیده
منابع مشابه
Graphs of Linear Clique-Width at Most 3
A graph has linear clique-width at most k if it has a clique-width expression using at most k labels such that every disjoint union operation has an operand which is a single vertex graph. We give the first characterisation of graphs of linear clique-width at most 3, and we give the first polynomial-time recognition algorithm for graphs of linear clique-width at most 3. In addition, we present ...
متن کاملFinite imprimitive linear groups of prime degree
In an earlier paper the authors have classified the nonsolvable primitive linear groups of prime degree over C. The present paper deals with the classification of the nonsolvable imprimitive linear groups of prime degree (equivalently, the irreducible monomial groups of prime degree). If G is a monomial group of prime degree r, then there is a projection π of G onto a transitive group H of perm...
متن کاملThe Groups of Order at Most 2000
We announce the construction up to isomorphism of the 49 910 529 484 groups of order at most 2000.
متن کاملCharacterization of some projective special linear groups in dimension four by their orders and degree patterns
Let $G$ be a finite group. The degree pattern of $G$ denoted by $D(G)$ is defined as follows: If $pi(G)={p_{1},p_{2},...,p_{k}}$ such that $p_{1}
متن کاملCharacterization of projective special linear groups in dimension three by their orders and degree patterns
The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1985
ISSN: 0021-8693
DOI: 10.1016/0021-8693(85)90158-9