Complex Factorizations of the Lucas Sequences via Matrix Methods

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negativity Subscripted Fibonacci And Lucas Numbers And Their Complex Factorizations

In this paper, we …nd families of (0; 1; 1) tridiagonal matrices whose determinants and permanents equal to the negatively subscripted Fibonacci and Lucas numbers. Also we give complex factorizations of these numbers by the …rst and second kinds of Chebyshev polynomials. 1. Introduction The well-known Fibonacci sequence, fFng ; is de…ned by the recurrence relation, for n 2 Fn+1 = Fn + Fn 1 (1.1...

متن کامل

Powers in Lucas Sequences via Galois Representations

Let un be a nondegenerate Lucas sequence. We generalize the results of Bugeaud, Mignotte, and Siksek [6] to give a systematic approach towards the problem of determining all perfect powers in any particular Lucas sequence. We then prove a general bound on admissible prime powers in a Lucas sequence assuming the Frey-Mazur conjecture on isomorphic mod p Galois representations of elliptic curves.

متن کامل

Collaborative Filtering via Ensembles of Matrix Factorizations

We present a Matrix Factorization (MF) based approach for the Netflix Prize competition. Currently MF based algorithms are popular and have proved successful for collaborative filtering tasks. For the Netflix Prize competition, we adopt three different types of MF algorithms: regularized MF, maximum margin MF and non-negative MF. Furthermore, for each MF algorithm, instead of selecting the opti...

متن کامل

Fibonacci and Lucas Sums by Matrix Methods

The Fibonacci sequence {Fn} is defined by the recurrence relation Fn = Fn−1+ Fn−2, for n ≥ 2 with F0 = 0 and F1 = 1. The Lucas sequence {Ln} , considered as a companion to Fibonacci sequence, is defined recursively by Ln = Ln−1 + Ln−2, for n ≥ 2 with L0 = 2 and L1 = 1. It is well known that F−n = (−1)Fn and L−n = (−1)Ln, for every n ∈ Z. For more detailed information see [9],[10]. This paper pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2014

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2014/387675