Complex Dirac Structures: Invariants and Local Structure
نویسندگان
چکیده
We study complex Dirac structures, that is, structures in the complexified generalized tangent bundle. These include presymplectic foliations, transverse holomorphic CR-related geometries and structures. introduce two invariants, order (normalized) type. show that, together with real index, they allow us to obtain a pointwise classification of For constant order, we prove existence an underlying structure, which generalizes Poisson structure associated structure. index splitting theorem, gives local description terms leaf small transversal.
منابع مشابه
dirac structures
in this paper we introduce the concept of dirac structures on (hermitian) modules and vectorbundles and deduce some of their properties. among other things we prove that there is a one to onecorrespondence between the set of all dirac structures on a (hermitian) module and the group of allautomorphisms of the module. this correspondence enables us to represent dirac structures on (hermitian)mod...
متن کاملInvariants of Complex Structures on Nilmanifolds
Let (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to i...
متن کاملOn the local structure of Dirac manifolds
We give a local normal form for Dirac structures. As a consequence, we show that the dimensions of the pre-symplectic leaves of a Dirac manifold have the same parity. We also show that, given a point m of a Dirac manifold M , there is a well-defined transverse Poisson structure to the pre-symplectic leaf P through m. Finally, we describe the neighborhood of a pre-symplectic leaf in terms of geo...
متن کاملE1(M )-Dirac structures and Jacobi structures
Using E1(M)-Dirac structures, a notion introduced by A. Wade, we obtain conditions under which a submanifold of a Jacobi manifold has an induced Jacobi structure, generalizing the result obtained by Courant for Dirac structures and submanifolds of a Poisson manifold.
متن کاملDirac Structures and Generalized Complex Structures on TM × R h by Izu Vaisman
We consider Courant and Courant-Jacobi brackets on the stable tangent bundle TM ×R of a differentiable manifold and corresponding Dirac, Dirac-Jacobi and generalized complex structures. We prove that Dirac and Dirac-Jacobi structures on TM × R can be prolonged to TM × R, k > h, by means of commuting infinitesimal automorphisms. Some of the stable, generalized, complex structures are a natural g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2022
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-022-04471-1