Complex Chebyshev polynomials on circular sectors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Faber Polynomials for Circular Sectors

The Faber polynomials for a region of the complex plane, which are of interest as a basis for polynomial approximation of analytic functions, are determined by a conformai mapping of the complement of that region to the complement of the unit disc. We derive this conformai mapping for a circular sector {;: \z\ < 1, |argz| < i/a}, where a > 1, and obtain a recurrence relation for the coefficient...

متن کامل

Szegő-Widom asymptotics of Chebyshev polynomials on circular arcs

We review the main results of the seminal paper of Widom [2] on asymptotics of or-thogonal and Chebyshev polynomials associated with a set E (i.e., the monic polynomialsof degree at most n that minimize the sup-norm‖Tn‖E), where E is a system of Jordanregions and arcs. Thiran and Detaille [1], considered the Chebyshev polynomials Tn on acircular arc Aα and managed to fin...

متن کامل

On integer Chebyshev polynomials

We are concerned with the problem of minimizing the supremum norm on [0, 1] of a nonzero polynomial of degree at most n with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem due to P. Borwein and T. Erdélyi and impr...

متن کامل

On Chebyshev Polynomials of Matrices

The mth Chebyshev polynomial of a square matrix A is the monic polynomial that minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well known propertie...

متن کامل

Symmetrized Chebyshev Polynomials

We define a class of multivariate Laurent polynomials closely related to Chebyshev polynomials and prove the simple but somewhat surprising (in view of the fact that the signs of the coefficients of the Chebyshev polynomials themselves alternate) result that their coefficients are non-negative. As a corollary we find that Tn(c cos θ) and Un(c cos θ) are positive definite functions. We further s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1978

ISSN: 0021-9045

DOI: 10.1016/0021-9045(78)90001-1