Completeness Properties of Certain Normal Subgroup Lattices
نویسندگان
چکیده
منابع مشابه
Pseudocomplementation in (normal) subgroup lattices
The goal of this paper is to study finite groups admitting a pseudocomplemented subgroup lattice (PK-groups) or a pseudocomplemented normal subgroup lattice (PKN-groups). In particular, we obtain a complete classification of finite PK-groups and of finite nilpotent PKN-groups. We also study groups with a Stone normal subgroup lattice, and we classify finite groups for which every subgroup has a...
متن کاملComplementation in normal subgroup lattices
The goal of this survey is to study some classes of groups determined by different types of complementation of their normal subgroup lattices. The groups whose normal subgroup lattices are Stone lattices, boolean lattices or ortholattices will be also investigated. MSC (2000): Primary 20D30, Secondary 20E15, 06C15, 06D15.
متن کاملCommutativity Criterions Using Normal Subgroup Lattices
We prove that a group G is Abelian whenever (1) it is nilpotent and the lattice of normal subgroups of G is isomorphic to the subgroup lattice of an Abelian group or (2) there exists a non-torsion Abelian group B such that the normal subgroup lattice of B × G is isomorphic to the subgroup lattice of an Abelian group. Using (2), it is proved that an Abelian group A can be determined in the class...
متن کاملCompleteness results for metrized rings and lattices
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
متن کاملOn Marginal Automorphisms of a Group Fixing the Certain Subgroup
Let W be a variety of groups defined by a set W of laws and G be a finite p-group in W. The automorphism α of a group G is said to bea marginal automorphism (with respect to W), if for all x ∈ G, x−1α(x) ∈ W∗(G), where W∗(G) is the marginal subgroup of G. Let M,N be two normalsubgroups of G. By AutM(G), we mean the subgroup of Aut(G) consistingof all automorphisms which centralize G/M. AutN(G) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 1987
ISSN: 0195-6698
DOI: 10.1016/s0195-6698(87)80003-3