Completely normal frames and real-valued functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completely Normal Frames and Real-valued Functions

Up to now point-free insertion results have been obtained only for semicontinuous real functions. Notably, there is now available a setting for dealing with arbitrary, not necessarily (semi-)continuous, point-free real functions, due to Gutiérrez Garćıa, Kubiak and Picado, that gives point-free topology the freedom to deal with general real functions only available before to point-set topology....

متن کامل

On lattice-valued frames: The completely distributive case

We provide an extension of the notion of chain-valued frame introduced by Pultr and Rodabaugh in [Category theoretic aspects of chain-valued frames: parts I and II, Fuzzy Sets and Systems 159 (2008) 501–528 and 529–558] by relaxing the assumption that L be a complete chain. As a result of this investigation we formulate the category L-Frm of L-frames under the weaker assumption that L is a comp...

متن کامل

Pointfree topology version of image of real-valued continuous functions

Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree  version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree  version of $C_c(X).$The main aim of this paper is to present t...

متن کامل

The ring of real-valued functions on a frame

In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...

متن کامل

Real-valued Functions on Flows

We develop the flow analog of the classical Yosida adjunction between spaces and archimedean lattice-ordered groups with strong unit. A product of this development is the flow counterpart of the classical compactification of a space. We characterize those flows which are compactifiable, i.e., dense subflows of a compact flow. Finally, we exhibit a duality between the compactifications of a give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2009

ISSN: 0166-8641

DOI: 10.1016/j.topol.2008.12.042