Completely bootstrapped tokamak

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

bootfs - Bootstrapped feature selection

The usage of the package is illustrated for three classification algorithms: pamr (Prediction analysis for Microarrays, [3], implementation in pamr -Rpackage), rf boruta (Random forests with the Boruta algorithm for feature selection, [2], implementation in Boruta-R-package) and scad (Support Vector Machines with Smoothly Clipped Absolute Deviation feature selection, [4], implementation in the ...

متن کامل

Bootstrapped synthetic likelihood

The development of approximate Bayesian computation (ABC) and synthetic likelihood (SL) techniques has enabled the use of Bayesian inference for models that may be simulated, but for which the likelihood is not available to evaluate pointwise at values of an unknown parameter θ. The main idea in ABC and SL is to, for different values of θ (usually chosen using a Monte Carlo algorithm), build es...

متن کامل

Deep Exploration via Bootstrapped DQN

Efficient exploration in complex environments remains a major challenge for reinforcement learning. We propose bootstrapped DQN, a simple algorithm that explores in a computationally and statistically efficient manner through use of randomized value functions. Unlike dithering strategies such as -greedy exploration, bootstrapped DQN carries out temporally-extended (or deep) exploration; this ca...

متن کامل

Object Detection with Bootstrapped Learning

This paper proposes a novel framework for learning object detection without labeled training data. The basic idea is to avoid the time consuming task of hand labeling training samples by using large amounts of unsupervised data which is usually available in vision (e.g. a video stream). We propose a bootstrap approach which starts with a very simple object detection approach, the data obtained ...

متن کامل

Bootstrapped learning of novel objects.

Recognition of familiar objects in cluttered backgrounds is a challenging computational problem. Camouflage provides a particularly striking case, where an object is difficult to detect, recognize, and segment even when in "plain view." Current computational approaches combine low-level features with high-level models to recognize objects. But what if the object is unfamiliar? A novel camouflag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids B: Plasma Physics

سال: 1992

ISSN: 0899-8221

DOI: 10.1063/1.860429