COMPLETE SUBSET AVERAGING FOR QUANTILE REGRESSIONS
نویسندگان
چکیده
We propose a novel conditional quantile prediction method based on complete subset averaging (CSA) for regressions. All models under consideration are potentially misspecified, and the dimension of regressors goes to infinity as sample size increases. Since we average over subsets, number is much larger than usual model which adopts sophisticated weighting schemes. use an equal weight but select proper leave-one-out cross-validation method. Building upon theory Lu Su (2015, Journal Econometrics 188, 40–58), investigate large properties CSA show asymptotic optimality in sense Li (1987, Annals Statistics 15, 958–975) check finite performance via Monte Carlo simulations empirical applications.
منابع مشابه
Jackknife Model Averaging for Quantile Regressions
In this paper we consider the problem of frequentist model averaging for quantile regression (QR) when all the models under investigation are potentially misspecified and the number of parameters in some or all models is diverging with the sample size To allow for the dependence between the error terms and the regressors in the QR models, we propose a jackknife model averaging (JMA) estima...
متن کاملComplete Subset Regressions
This paper proposes a new method for combining forecasts based on complete subset regressions. For a given set of potential predictor variables we combine forecasts from all possible linear regression models that keep the number of predictors fixed. We explore how the choice of model complexity, as measured by the number of included predictor variables, can be used to trade off the bias and var...
متن کاملQuantile Uncorrelation and Instrumental Regressions
We introduce a notion of median uncorrelation that is a natural extension of mean (linear) uncorrelation. A scalar random variable Y is median uncorrelated with a k-dimensional random vector X if and only if the slope from an LAD regression of Y on X is zero. Using this simple definition, we characterize properties of median uncorrelated random variables, and introduce a notion of multivariate ...
متن کاملFunctional Data Analysis of Generalized Quantile Regressions
[To be revised.] Quantile and expectile regression are tail oriented conditional regression. They can be transformed as generalized quantile regression. Traditional generalized quantile regression focuses on a single curve. When more random curves are available, we can estimate the single curves jointly by using the information from all subjects instead of estimate it individually. To avoid too...
متن کاملImproving the computation of censored quantile regressions
Censored quantile regressions (CQR) are a valuable tool in economics and engineering. The computation of estimators is highly complex and the performance of standard methods is not satisfactory, in particular if a high degree of censoring is present. Due to an interpolation property the computation of CQR estimates corresponds to the solution of a large scale discrete optimization problem. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometric Theory
سال: 2021
ISSN: ['1469-4360', '0266-4666']
DOI: https://doi.org/10.1017/s0266466621000402