Complete solutions of a family of cubic Thue equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic Thue equations with many solutions

We shall prove that if F is a cubic binary form with integer coefficients and non-zero discriminant then there is a positive number c, which depends on F, such that the Thue equation F (x, y) = m has at least c(logm) solutions in integers x and y for infinitely many positive integers m.

متن کامل

On Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Non-isomorphic Simplest Cubic Fields

We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m + 3m+ 9 and non-isomorphic simplest cubic fields. By applying R. Okazaki’s result for non-isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m+ 9.

متن کامل

Complete solutions of a family of quartic Thue and index form equations

Continuing the recent work of the second author, we prove that the diophantine equation fa(x, y) = x 4 − axy − xy + axy + y = 1 for |a| ≥ 3 has exactly 12 solutions except when |a| = 4, when it has 16 solutions. If α = α(a) denotes one of the zeros of fa(x, 1), then for |a| ≥ 4 we also find all γ ∈ Z[α] with Z[γ] = Z[α].

متن کامل

On Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Isomorphic Simplest Cubic Fields

We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m+3m+9 and isomorphic simplest cubic fields. By applying R. Okazaki’s result for isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m + 9.

متن کامل

On the solutions of a family of quartic Thue equations

In this paper, we solve a certain family of diophantine equations associated with a family of cyclic quartic number fields. In fact, we prove that for n ≤ 5× 106 and n ≥ N = 1.191× 1019, with n, n+ 2, n2 + 4 square-free, the Thue equation Φn(x, y) = x 4 − nxy − (n + 2n + 4n+ 2)xy − nxy + y = 1 has no integral solution except the trivial ones: (1, 0), (−1, 0), (0, 1), (0,−1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux

سال: 2006

ISSN: 1246-7405

DOI: 10.5802/jtnb.544