Complete solutions of a family of cubic Thue equations
نویسندگان
چکیده
منابع مشابه
Cubic Thue equations with many solutions
We shall prove that if F is a cubic binary form with integer coefficients and non-zero discriminant then there is a positive number c, which depends on F, such that the Thue equation F (x, y) = m has at least c(logm) solutions in integers x and y for infinitely many positive integers m.
متن کاملOn Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Non-isomorphic Simplest Cubic Fields
We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m + 3m+ 9 and non-isomorphic simplest cubic fields. By applying R. Okazaki’s result for non-isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m+ 9.
متن کاملComplete solutions of a family of quartic Thue and index form equations
Continuing the recent work of the second author, we prove that the diophantine equation fa(x, y) = x 4 − axy − xy + axy + y = 1 for |a| ≥ 3 has exactly 12 solutions except when |a| = 4, when it has 16 solutions. If α = α(a) denotes one of the zeros of fa(x, 1), then for |a| ≥ 4 we also find all γ ∈ Z[α] with Z[γ] = Z[α].
متن کاملOn Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Isomorphic Simplest Cubic Fields
We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m+3m+9 and isomorphic simplest cubic fields. By applying R. Okazaki’s result for isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m + 9.
متن کاملOn the solutions of a family of quartic Thue equations
In this paper, we solve a certain family of diophantine equations associated with a family of cyclic quartic number fields. In fact, we prove that for n ≤ 5× 106 and n ≥ N = 1.191× 1019, with n, n+ 2, n2 + 4 square-free, the Thue equation Φn(x, y) = x 4 − nxy − (n + 2n + 4n+ 2)xy − nxy + y = 1 has no integral solution except the trivial ones: (1, 0), (−1, 0), (0, 1), (0,−1).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2006
ISSN: 1246-7405
DOI: 10.5802/jtnb.544