Complete Kneser transversals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Kneser Transversals

Let k, d, λ > 1 be integers with d > λ. Let m(k, d, λ) be the maximum positive integer n such that every set of n points (not necessarily in general position) in R has the property that the convex hulls of all k-sets have a common transversal (d − λ)-plane. It turns out that m(k, d, λ) is strongly connected with other interesting problems, for instance, the chromatic number of Kneser hypergraph...

متن کامل

Codimension two and three Kneser Transversals

Let k, d, λ > 1 be integers with d > λ and let X ⊂ R be a finite set. A (d−λ)-plane L transversal to the convex hull of all k-sets of X is called Kneser transversal. If in addition L contains (d− λ) + 1 points of X, then L is called complete Kneser transversal. In this paper, we present various results on the existence of (complete) Kneser transversals for λ = 2, 3. In order to do this, we intr...

متن کامل

Maximum stable sets in analogs of Kneser and complete graphs

We prove an analog of results by Erdős-Ko-Rado and GreenwellLovász by characterising the maximum stable sets in special vertex-transitive subgraphs of powers of complete graphs, and proving that these graphs admit a unique optimal vertex colouring, up to permutation of the coordinates.

متن کامل

Common Transversals

Given t families, each family consisting of s finite sets, we show that if the families “separate points" in a natural way, and if the union of all the sets in all the families contains more than (s+1)t st 1 1 elements, then a common transversal of the t families exists. In case each family is a covering family, the bound is st st 1. Both of these bounds are best possible. This work extends rec...

متن کامل

Convex Transversals

We answer the question initially posed by Arik Tamir at the Fourth NYU Computational Geometry Day (March, 1987): “Given a collection of compact sets, can one decide in polynomial time whether there exists a convex body whose boundary intersects every set in the collection?” We prove that when the sets are segments in the plane, deciding existence of the convex stabber is NP-hard. The problem re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2017

ISSN: 0196-8858

DOI: 10.1016/j.aam.2016.07.004