Complete affine flows with nilpotent holonomy group
نویسندگان
چکیده
منابع مشابه
Afflne manilolds with nilpotent holonomy
An affine manifold is a differentiable manifold together with an atlas of coordinate charts whose coordinate changes extend to affine automorphisms of Euclidean space. These charts are called atline coordinates. A map between affine manifolds is called affine it its expression in affine coordinates is the restriction of an aftine map between vector spaces. Thus we form the category of affine ma...
متن کاملAffine Holonomy Foliations
We establish a geometric condition that determines when a type III von Neumann algebra arises from a foliation whose holonomy becomes affine with respect to a suitable transverse coordinate system. Under such an assumption the Godbillon-Vey class of the foliation becomes trivial in contrast to the case considered in Connes’s famous theorem.
متن کاملNilpotent and Recursive Flows
In this paper we introduce a class of nonlinear vector fields on infinite dimensional manifolds such that the corresponding evolution equations can be solved with the same method one uses to solve ordinary differential equations with constant coefficients. Mostly, these equations are nonlinear partial differential equations. It is shown that these flows are characterized by a generalization of ...
متن کاملFree Two-step Nilpotent Groups Whose Automorphism Group Is Complete
Dyer and Formanek (1976) proved that if N is a free nilpotent group of class two and of rank 6= 1, 3, then the automorphism group Aut(N) of N is complete. The main result of this paper states that the automorphism group of an infinitely generated free nilpotent group of class two is also complete.
متن کاملPrimitive Compact Flat Manifolds with Holonomy Group
From an important construction of Calabi (see [Ca], [Wo]), it follows that the compact Riemannian flat manifolds with first Betti number zero are the building blocks for all compact Riemannian flat manifolds. It is, therefore, of interest to construct families of such objects. These are often called primitive manifolds. Hantzsche and Wendt (1935) constructed the only existing 3-dimensional comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hokkaido Mathematical Journal
سال: 1999
ISSN: 0385-4035
DOI: 10.14492/hokmj/1351001234