Competitive Learning With Pairwise Constraints
نویسندگان
چکیده
منابع مشابه
Discriminative Dictionary Learning with Pairwise Constraints
In computer vision problems such as pair matching, only binary information ‘same’ or ‘different’ label for pairs of images is given during training. This is in contrast to classification problems, where the category labels of training images are provided. We propose a unified discriminative dictionary learning approach for both pair matching and multiclass classification tasks. More specificall...
متن کاملSemi-Supervised Metric Learning Using Pairwise Constraints
Distance metric has an important role in many machine learning algorithms. Recently, metric learning for semi-supervised algorithms has received much attention. For semi-supervised clustering, usually a set of pairwise similarity and dissimilarity constraints is provided as supervisory information. Until now, various metric learning methods utilizing pairwise constraints have been proposed. The...
متن کاملCross-Modal Learning via Pairwise Constraints
In multimedia applications, the text and image components in a web document form a pairwise constraint that potentially indicates the same semantic concept. This paper studies cross-modal learning via the pairwise constraint, and aims to find the common structure hidden in different modalities. We first propose a compound regularization framework to deal with the pairwise constraint, which can ...
متن کاملNon-Parametric Kernel Learning with robust pairwise constraints
For existing kernel learning based semi-supervised clustering algorithms, it is generally difficult to scale well with large scale datasets and robust pairwise constraints. In this paper, we proposed a new Non-Parametric Kernel Learning framework (NPKL) to deal with these problems. We generalized the graph embedding framework into kernel learning, by reforming it as a semi-definitive programmin...
متن کاملLearning Similarity Measures from Pairwise Constraints with Neural Networks
This paper presents a novel neural network model, called Similarity Neural Network (SNN), designed to learn similarity measures for pairs of patterns exploiting binary supervision. The model guarantees to compute a non negative and symmetric measure, and shows good generalization capabilities even if a small set of supervised examples is used for training. The approximation capabilities of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2013
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2012.2227064