Compensating the Fitness Costs of Synonymous Mutations
نویسندگان
چکیده
منابع مشابه
Compensating the Fitness Costs of Synonymous Mutations
Synonymous mutations do not change the sequence of the polypeptide but they may still influence fitness. We investigated in Salmonella enterica how four synonymous mutations in the rpsT gene (encoding ribosomal protein S20) reduce fitness (i.e., growth rate) and the mechanisms by which this cost can be genetically compensated. The reduced growth rates of the synonymous mutants were correlated w...
متن کاملHow do synonymous mutations affect fitness?
While it has often been assumed that, in humans, synonymous mutations would have no effect on fitness, let alone cause disease, this position has been questioned over the last decade. There is now considerable evidence that such mutations can, for example, disrupt splicing and interfere with miRNA binding. Two recent publications suggest involvement of additional mechanisms: modification of pro...
متن کاملThe fitness costs of antibiotic resistance mutations
Antibiotic resistance is increasing in pathogenic microbial populations and is thus a major threat to public health. The fate of a resistance mutation in pathogen populations is determined in part by its fitness. Mutations that suffer little or no fitness cost are more likely to persist in the absence of antibiotic treatment. In this review, we performed a meta-analysis to investigate the fitne...
متن کاملFitness Costs of Synonymous Mutations in the rpsT Gene Can Be Compensated by Restoring mRNA Base Pairing
We previously reported that the distribution of fitness effects for non-synonymous and synonymous mutations in Salmonella typhimurium ribosomal proteins S20 and L1 are similar, suggesting that fitness constraints are present at the level of mRNA. Here we explore the hypothesis that synonymous mutations confer their fitness-reducing effect by alterating the secondary structure of the mRNA. To th...
متن کاملCompensation of fitness costs and reversibility of antibiotic resistance mutations.
Strains of bacterial pathogens that have acquired mutations conferring antibiotic resistance often have a lower growth rate and are less invasive or transmissible initially than their susceptible counterparts. However, fitness costs of resistance mutations can be ameliorated by secondary site mutations. These so-called compensatory mutations may restore fitness in the absence and/or presence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Biology and Evolution
سال: 2016
ISSN: 0737-4038,1537-1719
DOI: 10.1093/molbev/msw028