Comparsion of stochastic approximation and sample average approximation for saddle point problem with bilinear coupling term

نویسندگان

چکیده

Стохастическая оптимизация является актуальным направлением исследования в связи со значительными успехами области машинного обучения и их применениями для решения повседневных задач. В данной работе рассматриваются два принципиально различных метода задачи стохастической оптимизации — онлайн- офлайн-алгоритмы. Соответствующие алгоритмы имеют свои качественные преимущества перед друг другом. Так, офлайн-алгоритмов требуется решать вспомогательную задачу с высокой точностью. Однако это можно делать распределенно, открывает принципиальные возможности, как, например, построение двойственной задачи. Несмотря на это, онлайн-, офлайн-алгоритмы преследуют общую цель решение заданной Это находит отражение сравнении вычислительной сложности описанных алгоритмов, что демонстрируется работе.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Eecient Stochastic Approximation Algorithm for Stochastic Saddle Point Problems

We show that Polyak's (1990) stochastic approximation algorithm with averaging originally developed for unconstrained minimization of a smooth strongly convex objective function observed with noise can be naturally modiied to solve convex-concave stochas-tic saddle point problems. We also show that the extended algorithm, considered on general families of stochastic convex-concave saddle point ...

متن کامل

Robust sample average approximation

Sample average approximation (SAA) is a widely popular approach to data-driven decisionmaking under uncertainty. Under mild assumptions, SAA is both tractable and enjoys strong asymptotic performance guarantees. Similar guarantees, however, do not typically hold in finite samples. In this paper, we propose a modification of SAA, which we term Robust SAA, which retains SAA’s tractability and asy...

متن کامل

The Sample Average Approximation Method for 2-stage Stochastic Optimization

We consider the Sample Average Approximation (SAA) method for 2-stage stochastic optimization problems with recourse and prove a polynomial time convergence theorem for the SAA method. In the 2-stage recourse model, where one makes decisions in two steps. First, given only distributional information about (some of) the data, one commits on initial (first-stage) actions, and then once the actual...

متن کامل

Sample Average Approximation for Stochastic Dominance Constrained Programs

In this paper we study optimization problems with second-order stochastic dominance constraints. This class of problems has been receiving increasing attention in the literature as it allows for the modeling of optimization problems where a risk-averse decision maker wants to ensure that the solution produced by the model dominates certain benchmarks. Here we deal with the case of multi-variate...

متن کامل

Sample Average Approximation for Stochastic Empty Container Repositioning

To incorporate uncertainties in empty container repositioning problem, we formulate a two-stage stochastic programming model with random demand, supply, ship weight capacity and ship space capacity. The Sample Average Approximation (SAA) method is applied to approximate the expected value function. Several non-independent and identically distributed sampling schemes are considered to enhance th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Komp?ûternye issledovaniâ i modelirovanie

سال: 2023

ISSN: ['2076-7633', '2077-6853']

DOI: https://doi.org/10.20537/2076-7633-2023-15-2-381-391