Compactness and collective compactness in spaces of compact operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function spaces and compactness

It is useful to treat real-valued functions (or complex-valued functions, or vector space-valued functions) as elements of a vector space, so that the tools from linear algebra can be applied. Given a set X one may consider the vector space R of all real-valued functions with domain X. If X is finite, say with n elements, then this is just the familiar vector space R. The more interesting examp...

متن کامل

Compactness in apartness spaces?

In this note, we establish some results which suggest a possible solution to the problem of finding the right constructive notion of compactness in the context of a not–necessarily–uniform apartness space.

متن کامل

Semi compactness and semi-I-compactness in ditopological texture spaces

In this paper we generalize the notion of Semi-continuity and MS-continuity and go on to study Semi-compactness, Semi-cocompactness, Semi-stability and Semi-costability in a ditopological texture space. We also extends the notion of Semi-compactness and Semi-cocompactness to a ditopological texture space modulo an ideal [13].

متن کامل

New operators through measure of non-compactness

In this article, we use two concepts, measure of non-compactness and Meir-Keeler condensing operators. The measure of non-compactness has been applied for existence of solution nonlinear integral equations, ordinary differential equations and system of differential equations in the case of finite and infinite dimensions by some authors. Also Meir-Keeler condensing operators are shown in some pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1981

ISSN: 0022-247X

DOI: 10.1016/0022-247x(81)90177-3