Compact quantum metric spaces from free graph algebras

نویسندگان

چکیده

Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra text] defined in Hartglass–Penneys’ article on canonical text]-algebras associated to planar algebra. Under mild conditions, is non-nuclear simple text]-algebra unique tracial state. There polynomial subalgebra together Dirac number operator such that spectral triple. We prove Haagerup-type bound of Ozawa–Rieffel verify yields compact quantum metric space sense Rieffel. give weighted analog Benjamini–Schramm convergence for graphs. As our are non-nuclear, adjust Lip-norm coming from utilize finite dimensional filtration text]. then graphs leads Gromov–Hausdorff adjusted spaces. an application, apply construction Guionnet–Jones–Shyakhtenko (GJS) conclude spaces GJS many infinite families algebras converge distance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

- Algebras as Compact Quantum Metric Spaces

Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We show that if G is a hyperbolic group and if l is a word-length function on G, then the topology from this metr...

متن کامل

Hyperbolic Group C-algebras and Free-product C-algebras as Compact Quantum Metric Spaces

Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We show that if G is a hyperbolic group and if l is a word-length function on G, then the topology from this metr...

متن کامل

Compact Quantum Metric Spaces

We give a brief survey of many of the high-lights of our present understanding of the young subject of quantum metric spaces, and of quantum Gromov-Hausdorff distance between them. We include examples. My interest in developing the theory of compact quantum metric spaces was stimulated by certain statements in the high-energy physics and string-theory literature, concerning non-commutative spac...

متن کامل

Group C-algebras as Compact Quantum Metric Spaces

Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We investigate whether the topology from this metric coincides with the weak-∗ topology (our definition of a “com...

متن کامل

Θ-deformations as Compact Quantum Metric Spaces

LetM be a compact spin manifold with a smooth action of the ntorus. Connes and Landi constructed θ-deformations Mθ of M , parameterized by n×n real skew-symmetric matrices θ. TheMθ’s together with the canonical Dirac operator (D,H) on M are an isospectral deformation of M . The Dirac operator D defines a Lipschitz seminorm on C(Mθ), which defines a metric on the state space of C(Mθ). We show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2022

ISSN: ['1793-6519', '0129-167X']

DOI: https://doi.org/10.1142/s0129167x22500732