Compact groups in which all elements have countable right Engel sinks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left 3-engel Elements in Groups

In this paper we study left 3-Engel elements in groups. In particular, we prove that for any prime p and any left 3-Engel element x of finite p-power order in a group G, x is in the Baer radical of G. Also it is proved that 〈x, y〉 is nilpotent of class 4 for every two left 3-Engel elements in a group G.

متن کامل

un 2 00 4 Notes on Engel groups and Engel elements in groups . Some generalizations

Engel groups and Engel elements became popular in 50s. We consider in the paper the more general nil-groups and nil-elements in groups. All these notions are related to nilpotent groups and nilpo-tent radicals in groups. These notions generate problems which are parallel to Burnside problems for periodic groups. The first three theorems of the paper are devoted to nil-groups and Engel groups, w...

متن کامل

Probability Measures on Compact Groups which have Square-Integrable Densities

We apply Peter-Weyl theory to obtain necessary and sufficient conditions for a probability measure on a compact group to have a square-integrable density. Applications are given to measures on the d-dimensional torus. MSC 2000: 60B15, 60E07, 43A05, 43A30

متن کامل

on the right n-engel group elements

in this paper we study right $n$-engel group elements‎. ‎by modifying a group constructed by newman and nickel‎, ‎we construct‎, ‎for each integer $ngeq 5$‎, ‎a 2-generator group $g =langle a‎, ‎brangle$ with the property that $b$ is a right $n$-engel‎ ‎element but where $[b^k,_n a]$ is of infinite order when $knotin {0‎, ‎1}$‎.

متن کامل

On the Right and Left 4-engel Elements

In this paper we study left and right 4-Engel elements of a group. In particular, we prove that 〈a, a〉 is nilpotent of class at most 4, whenever a is any element and b are right 4-Engel elements or a are left 4-Engel elements and b is an arbitrary element of G. Furthermore we prove that for any prime p and any element a of finite p-power order in a group G such that a ∈ L4(G), a, if p = 2, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics

سال: 2020

ISSN: 0308-2105,1473-7124

DOI: 10.1017/prm.2020.81