Compact and weakly compact homomorphisms between algebras of differentiable functions
نویسندگان
چکیده
منابع مشابه
Compact Homomorphisms of (t-algebras
Suppose A is a C*-algebra and B is a Banach algebra such that it can be continuously imbedded in B(H), the Banach algebra of bounded linear operators on some Hubert space H. It is shown that if 6 is a compact algebra homomorphism from A into B, then 6 is a finite rank operator, and the range of 0 is spanned by a finite number of idempotents. If, moreover, B is commutative, then 9 has the form 8...
متن کاملCompact endomorphisms of Banach algebras of infinitely differentiable functions
Let (Mn) be a sequence of positive numbers satisfying M0 = 1 and Mn+m MnMm ≥ ( n+m n ) , m, n, non-negative integers. We let D([0, 1],M) = {f ∈ C∞([0, 1]) : ‖f‖ = ∞ ∑
متن کاملWeakly Compact #?-algebras
1. A complex Banach algebra A is a compact (weakly compact) algebra if its left and right regular representations consist of compact (weakly compact) operators. Let E be any subset of A and denote by Ei and Er the left and right annihilators of E. A is an annihilator algebra if A¡= (0) —Ar, Ir^{fS) for each proper closed left ideal / and Ji t¿ (0) for each proper closed right ideal /. In [6, Th...
متن کاملNormed Algebras of Differentiable Functions on Compact Plane Sets
We investigate the completeness and completions of the normed algebras (D(1)(X), ‖ · ‖) for perfect, compact plane sets X. In particular, we construct a radially self-absorbing, compact plane set X such that the normed algebra (D(1)(X), ‖ · ‖) is not complete. This solves a question of Bland and Feinstein. We also prove that there are several classes of connected, compact plane sets X for which...
متن کاملEndomorphisms of Banach algebras of infinitely differentiable functions on compact plane sets
This note is a sequel to [7] where we investigated the endomorphisms of a certain class of Banach algebras of infinitely differentiable functions on the unit interval. Start with a perfect, compact plane setX. We say that a complex-valued function f defined on X is complex-differentiable at a point a ∈ X if the limit f (a) = lim z→a, z∈X f(z)− f(a) z − a exists. We call f ′(a) the complex deriv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1992
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1992-1087463-1