Commutatively of Prime and Semiprime ?-Rings with Symmetric BI-Derivations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Generalized Derivations in Prime and Semiprime Rings

Let R be a ring with center Z and I a nonzero ideal of R. An additive mapping F : R → R is called a generalized derivation of R if there exists a derivation d : R → R such that F xy F x y xd y for all x, y ∈ R. In the present paper, we prove that if F x, y ± x, y for all x, y ∈ I or F x ◦ y ± x ◦ y for all x, y ∈ I, then the semiprime ring R must contains a nonzero central ideal, provided d I /...

متن کامل

A Note on (α, α)-Symmetric Derivations in Semiprime Rings

In this paper, we introduce (α, α)-symmetric derivations and establish some interesting results and also extend an important result of J. Vukman by using (α, α)-derivation.

متن کامل

Derivations in semiprime rings and Banach algebras

Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...

متن کامل

A note on derivations in semiprime rings

We prove in this note the following result. Let n > 1 be an integer and let R be an n!torsion-free semiprime ring with identity element. Suppose that there exists an additive mapping D : R→ R such that D(xn) =∑nj=1 xn− jD(x)x j−1is fulfilled for all x ∈ R. In this case, D is a derivation. This research is motivated by the work of Bridges and Bergen (1984). Throughout, R will represent an associ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: GANIT: Journal of Bangladesh Mathematical Society

سال: 2016

ISSN: 2224-5111,1606-3694

DOI: 10.3329/ganit.v34i0.28551