Commutative Partially Ordered Recursive Arithmetics.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Representation Theorem for Partially Ordered Commutative Rings

An extension of the Kadison-Dubois representation theorem is proved. This extends both the classical version [3] and the preordering version given by Jacobi in [5]. It is then shown how this can be used to sharpen the results on representations of strictly positive polynomials given by Jacobi and Prestel in [6]. In [4] Dubois extends a result of Kadison on representation of archimedean partiall...

متن کامل

Tripled partially ordered sets

In this paper, we introduce tripled partially ordered sets and monotone functions on tripled partiallyordered sets. Some basic properties on these new dened sets are studied and some examples forclarifying are given.

متن کامل

Totally Ordered Commutative Semigroups

Let 5( + , < ) be a system consisting of a set S endowed with an associative binary operation + and a total ( = linear = simple) order relation < . The composition + and the relation < may be connected by either or both of the following conditions. MC (Monotone Condition). If a and b are elements of 5 such that ax+y ...

متن کامل

Partially Commutative Inverse Monoids

Free partially commutative inverse monoids are investigated. Analogously to free partially commutative monoids (trace monoids), free partially commutative inverse monoids are the quotients of free inverse monoids modulo a partially defined commutation relation on the generators. A quasi linear time algorithm for the word problem is presented, more precisely, we give an O(n log(n)) algorithm for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1963

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-10699