Commutative, noetherian rings over which every module has a maximal submodule
نویسندگان
چکیده
منابع مشابه
NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
متن کاملRings for which every simple module is almost injective
We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...
متن کاملANNIHILATING SUBMODULE GRAPHS FOR MODULES OVER COMMUTATIVE RINGS
In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...
متن کاملModules for which every non-cosingular submodule is a summand
A module $M$ is lifting if and only if $M$ is amply supplemented and every coclosed submodule of $M$ is a direct summand. In this paper, we are interested in a generalization of lifting modules by removing the condition"amply supplemented" and just focus on modules such that every non-cosingular submodule of them is a summand. We call these modules NS. We investigate some gen...
متن کاملAnnihilating Submodule Graphs for Modules over Commutative Rings
In this article, we give several generalizations of the concept of annihilating an ideal graph over a commutative ring with identity to modules. We observe that, over a commutative ring, R, AG∗(RM) is connected, and diamAG∗(RM) ≤ 3. Moreover, if AG∗(RM) contains a cycle, then grAG∗(RM) ≤ 4. Also for an R-module M with A∗(M) ̸= S(M) \ {0}, A∗(M) = ∅, if and only if M is a uniform module, and ann(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1966
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1966-0200303-x