Common solution to the Lyapunov equation for 2×2 complex matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The perturbation bound for the solution of the Lyapunov equation ∗

We present the first order error bound for the Lyapunov equation AX +XA∗ = −GG∗, where A is perturbed to A+ δA. We use the structure of the solution of the Lyapunov equation X = m ∑ k=1 WkW ∗ k , where Wk is the k-th matrix obtained by the Low Rank Cholesky Factor ADI (LRCF-ADI) algorithm using the set of ADI parameters equal to exact eigenvalues of A, that is with ADI parameters {p1, . . . , p...

متن کامل

Bounds for the solution of the discrete algebraic Lyapunov equation

New bounds for solutions of the discrete algebraic Lyapunov equation P = APA T + Q are derived. The new bounds are compared to existing ones and found to be of particular interest when A is non-normal.

متن کامل

Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation

is called the continuous-time Lyapunov equation and is of interest in a number of areas of control theory such as optimal control and stability (Barnett, 1975; Barnett & Storey, 1968). The equation has a unique Hermitian solution, X, if and only if Xt + X~j ^ 0 for all i and j (Barnett, 1975). In particular if every Xt has a negative real part, so that A is stable, and if C is non-negative defi...

متن کامل

Lyapunov equation

This chapter is about numerical methods for a particular type of equation expressed as a matrix equality. The Lyapunov equation is the most common problem in the class of problems called matrix equations. Other examples of matrix equations: Sylvester equation, Stein equation, Riccati equation. Definition 5.0.1 Consider two square matrices A, W ∈ Rn×n. The problem to find a square matrix X ∈ Rn×...

متن کامل

Bounds on the trace of a solution to the Lyapunov equation with a general stable matrix

Some new estimates for the eigenvalue decay rate of the Lyapunov equation AX + XA = B with a low rank right-hand side B are derived. The new bounds show that the right-hand side B can greatly influence the eigenvalue decay rate of the solution. This suggests a new choice of the ADI-parameters for the iterative solution. The advantage of these new parameters is illustrated on second order damped...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2007

ISSN: 0024-3795

DOI: 10.1016/j.laa.2006.08.028