Common preperiodic points for quadratic polynomials

نویسندگان

چکیده

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ f_c(z) = z^2+c $\end{document}</tex-math></inline-formula> for id="M2">\begin{document}$ c \in {\mathbb C} $\end{document}</tex-math></inline-formula>. We show there exists a uniform upper bound on the number of points in id="M3">\begin{document}$ P}^1( C}) that can be preperiodic both id="M4">\begin{document}$ f_{c_1} and id="M5">\begin{document}$ f_{c_2} $\end{document}</tex-math></inline-formula>, any pair id="M6">\begin{document}$ c_1\not c_2 id="M7">\begin{document}$ The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when parameters lie id="M8">\begin{document}$ \overline{\mathbb{Q}} building quantitative equidistribution theorem Favre Rivera-Letelier, use distortion theorems complex analysis to control size intersection distinct Julia sets. proofs are effective, provide explicit constants each results.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preperiodic points for quadratic polynomials over quadratic fields

To each quadratic number field K and each quadratic polynomial f with K-coefficients, one can associate a finite directed graph G(f,K) whose vertices are the K-rational preperiodic points for f , and whose edges reflect the action of f on these points. This paper has two main goals. (1) For an abstract directed graph G, classify the pairs (K, f) such that the isomorphism class of G is realized ...

متن کامل

Preperiodic Points of Polynomials over Global Fields

Given a global field K and a polynomial φ defined over K of degree at least two, Morton and Silverman conjectured in 1994 that the number of K-rational preperiodic points of φ is bounded in terms of only the degree of K and the degree of φ. In 1997, for quadratic polynomials over K = Q, Call and Goldstine proved a bound which was exponential in s, the number of primes of bad reduction of φ. By ...

متن کامل

The Complete Classification of Rational Preperiodic Points of Quadratic Polynomials over Q: a Refined Conjecture

We classify the graphs that can occur as the graph of rational preperiodic points of a quadratic polynomial over Q, assuming the conjecture that it is impossible to have rational points of period 4 or higher. In particular, we show under this assumption that the number of preperiodic points is at most 9. Elliptic curves of small conductor and the genus 2 modular curves X1(13), X1(16), and X1(18...

متن کامل

Simultaneously Preperiodic Points for Families of Polynomials in Normal Form

Let d > m > 1 be integers, let c1, . . . , cm+1 be distinct complex numbers, and let f(z) := zd + t1zm−1 + t2zm−2 + · · ·+ tm−1z + tm be an mparameter family of polynomials. We prove that the set of m-tuples of parameters (t1, . . . , tm) ∈ Cm with the property that each ci (for i = 1, . . . ,m+ 1) is preperiodic under the action of the corresponding polynomial f(z) is contained in finitely man...

متن کامل

A Finiteness Property for Preperiodic Points of Chebyshev Polynomials

Let K be a number field with algebraic closure K, let S be a finite set of places of K containing the archimedean places, and let φ be a Chebyshev polynomial. We prove that if α ∈ K is not preperiodic, then there are only finitely many preperiodic points β ∈ K which are S-integral with respect to α.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Modern Dynamics

سال: 2022

ISSN: ['1930-5311', '1930-532X']

DOI: https://doi.org/10.3934/jmd.2022012