Comment on Mitra’s generalization
نویسندگان
چکیده
منابع مشابه
On Generalization of prime submodules
Let R be a commutative ring with identity and M be a unitary R-module. Let : S(M) −! S(M) [ {;} be a function, where S(M) is the set of submodules ofM. Suppose n 2 is a positive integer. A proper submodule P of M is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 R and x 2 M and a1 . . . an−1x 2P(P), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x 2 P...
متن کاملOn Generalization of Cebysev Type Inequalities
In this paper, we establish new Cebysev type integral inequalities involving functions whose derivatives belong to L_{p} spaces via certain integral identities.
متن کاملOn a generalization of central Armendariz rings
In this paper, some properties of $alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $alpha(e)=e$ for each idempotent $e^{2}=e in R$ and $R$ is $alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $alpha$-skew A...
متن کاملA comment on the generalization of the Marinatto-Weber quantum game scheme
Iqbal and Toor [Phys. Rev. A 65, 022306 (2002)] and [Commun. Theor. Phys. 42, 335 (2004)] generalized the Marinatto-Weber quantum scheme for 2×2 games in order to study bimatrix games of 3×3 dimension, in particular the Rock-Paper-Scissors game. In our paper we show that Iqbal and Toor’s generalization exhibits certain undesirable property that can considerably influence the game result. To sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demography
سال: 1984
ISSN: 0070-3370,1533-7790
DOI: 10.2307/2061171