COMBO: An efficient Bayesian optimization library for materials science
نویسندگان
چکیده
منابع مشابه
An Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملAn Efficient Approach for Assessing Parameter Importance in Bayesian Optimization
We describe a method for quantifying the importance of a blackbox function’s input parameters and their interactions, based on function evaluations obtained by running a Bayesian optimization procedure. We focus on high-dimensional functions with mixed discrete/continuous as well as conditional inputs, and therefore employ random forest models. We derive the first exact and efficient approach f...
متن کاملAN EFFICIENT METAHEURISTIC ALGORITHM FOR ENGINEERING OPTIMIZATION: SOPT
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems so far. In the present study, a simple optimization (SOPT) algorithm with two main steps namely exploration and exploitation, is provided for practical applications. Aside from a reasonable rate of convergence attained, the ease in its implementation and dependen...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملTowards efficient Bayesian Optimization for Big Data
We present a new Bayesian optimization method, environmental entropy search (EnvES), suited for optimizing the hyperparameters of machine learning algorithms on large datasets. EnvES executes fast algorithm runs on subsets of the data and probabilistically extrapolates their performance to reason about performance on the entire dataset. It considers the dataset size as an additional degree of f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Discovery
سال: 2016
ISSN: 2352-9245
DOI: 10.1016/j.md.2016.04.001